Abstract

We consider the problem of two-dimensional (2D) direction of arrival (DOA) estimation for planar array, and propose a successive propagator method (PM)-based algorithm. The rotational invariance property of the propagator matrix is exploited to obtain the initial angle estimations, while the accurate estimates can be achieved through successive one-dimensional and local spectrum-peak searches. The proposed algorithm can obtain automatically paired 2D-DOA estimations, and it requires no eigenvalue decomposition of the covariance matrix of received data, which remarkably reduces the computational cost compared with traditional 2D-PM algorithm. In addition, the DOA estimation performance of the proposed algorithm is better than estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm and PM algorithm, and is close to 2D-PM algorithm which requires 2D spectrum-peak search. Numerical simulations demonstrate the effectiveness and improvement of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call