Abstract
Two-dimensional carbon nitride (2DCN) materials have emerged as an important class of 2D materials beyond graphene. However, 2DCN materials with nodal-line semimetal characteristic are rarely reported. In this work, a new nodal-line semimetal 2DCN with the stoichiometry C4 N4 is designed by using density functional theory (DFT) calculations and its application to anchor single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is investigated. C4 N4 is a planar covalent network (sp2 hybridization) with regular holes formed by the four N atoms, which is dynamically, thermodynamically, and mechanically stable. The nodal line is contributed by the pz orbitals of C and px/y orbitals of N atoms. C4 N4 shows an anisotropic Fermi velocity and high electron mobility. Because of its porous structure, C4 N4 can anchor heteroatoms as SACs for electrocatalysis. C4 N4 anchored with Fe or Co is shown to be highly active for the ORR with a rather high half-wave potential of around 0.90 V, which is higher than those of SACs on other carbon nitrides. These findings may provide a new strategy to design novel substrates for SACs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.