Abstract

The discovery of graphene has led to the devotion of intensive efforts, theoretical and experimental, to produce two-dimensional (2D) materials that can be used for developing functional materials and devices. This work provides a brief review of the recent developments in the lattice models of 2D Dirac materials and their relevant real material counterparts that are crucial for understanding the origins of 2D Dirac cones in electronic band structures as well as their material design and device applications. We focus on the roles of lattice symmetry, atomic orbital hybridization, and spin–orbit coupling in the presence of a Dirac cone. A number of lattice models, such as honeycomb, kagome, ruby, star, Cairo, and line-centered honeycomb, with different symmetries are reviewed based on the tight-binding approach. Inorganic and organic 2D materials, theoretically proposed or experimentally synthesized to satisfy these 2D Dirac lattice models, are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.