Abstract
In Parry and Zyskin (J. Elast. 127:249–268, 2017) we outlined mathematical methods which seemed to be necessary in order to discuss crystal structures with non-constant dislocation density tensor (ddt). This was part of a programme to investigate the geometry of continuously defective crystals and the symmetries of associated discrete structures—one can think of the programme as an attempt to generalize the use of crystallographic groups as material symmetries in non-linear elasticity theory, for perfect crystals, to deal with the case where defects are present.The methods used rely on the following fact: when the ddt is non-constant, (given technical assumptions), there is a Lie group that acts on the set of material points, and the dimension of the group is strictly greater than that of the ambient space in which the crystal resides. So there is a non-trivial isotropy group associated with the group action. We develop ideas, and recap the requisite mathematical apparatus, in the context of Davini’s model of defective crystals, then focus on a particular case where the ddt is such that a solvable three dimensional Lie group acts on a two dimensional crystal state. We construct the corresponding discrete structures too.The paper is an extension of Parry and Zyskin (J. Elast. 127:249–268, 2017), where the analogous group was nilpotent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.