Abstract

All-inorganic Sb-perovskite has become a promising material for solar cell applications owing to its air stability and nontoxic lead-free constitution. However, the poor morphology and unexpected (001) orientation of Sb-based perovskite films strongly hinder the improvement of efficiency. In this work, two-dimensional Cs3Sb2ClxI9−x with (201) preferred orientation has been successfully fabricated by introducing thiourea (TU) to the precursor solution. The presence of the C=S functional group in TU regulates the crystallization dynamics of Cs3Sb2I9−xClx films and generates the (201) preferred orientation of Cs3Sb2ClxI9−x films, which could effectively improve the carrier transport and film morphology. As a result, the Cs3Sb2I9−xClx perovskite solar cells (PSCs) delivered a power conversion efficiency (PCE) of 2.22%. Moreover, after being stored in nitrogen at room temperature for 60 days, the devices retained above 87.69% of their original efficiency. This work demonstrates a potential pathway to achieve high-efficiency Sb-based PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.