Abstract

Aluminum-ion batteries (AIBs) are regarded as one of the most promising types of energy storage device in light of the safety, natural abundance, and electrochemical properties of aluminum. However, the rate capabilities of AIBs are limited owing to the sluggish kinetics of chloroaluminate anions. In this study, a covalent organic framework (COF) is adopted as the cathode material in AIBs. Theoretical and experimental results suggest that the COFs allow fast anion diffusion and intercalation without structure collapse, owing to the robust frameworks and the hierarchical pores with a large specific surface area of 1794 m2 g-1 . The resultant AIB exhibits remarkable long-term stability, with a reversible discharge capacity of 150 mAh g-1 after 13 000 cycles at 2 A g-1 . It also shows an excellent rate capability of 113 mAh g-1 at 5 A g-1 . This work fully demonstrates the potential of COFs in the storage of chloroaluminate anions and other large-sized ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.