Abstract

Two cyclic diastereoisomeric structures, known as α- and β-anomers of d-glucose with different configurations around C1 with OH groups in axial or equitroial positions, undergo the mutarotation conversion to each other in water. Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses were applied to the time-dependent ATR IR spectra of aqueous solutions of α- and β-d-glucose undergoing such mutarotation conversion. 2DCOS analysis reveals that the increase and decrease in the IR intensities after the dissolution of α- or β-d-glucose are not fully synchronized, suggesting the mutarotation of d-glucose in water is not a simple binary conversion process but a multi-step reaction involving an intermediate species with a finite and observable concentration level and lifetime. 2DCDS analysis of the time-dependent ATR IR spectra clearly demonstrated the presence of intermediate species contributing to the band positions overlapped close to bands for α- and β-d-glucose. The fact that band positions identified for the intermediate species for α- to β-d-glucose conversion are the same for the reverse reaction suggests that they arise from the same species, most likely the open-ring structure produced by the hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.