Abstract

The subject of this paper is the numerical solution of the interaction of compressible flow and an elastic body with a special emphasis on the simulation of vibrations of vocal folds during phonation onset. The time-dependence of the domain occupied by the fluid is treated by the ALE (Arbitrary Lagrangian-Eulerian) method and the compressible Navier-Stokes equations are written in the ALE form. The deformation of the elastic body, caused by the aeroelastic forces, is described by the linear dynamical elasticity equations. Both these systems are coupled by transmission conditions. For the space-discretization of the flow problem the discontinuous Galerkin finite element method (DGFEM) is used. The time-discretization is realized by the backward difference formula (BDF). The structural problem is discretized by the conforming finite element method and the Newmark method. The results of the use of two different couplings and their comparison are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.