Abstract
This Letter describes the generation of 2D colloidal lattices in microchannels by coupling the laminar flow of dispersions of spherical colloids and geometrical confinement. We describe a nonequilibrium, convective, mechanism leading to formation of ordered 2D structures of both closed-packed hexagonal and non-closed-packed rhombic symmetries. The number and types of possible lattices is determined by the ratio of the width of the channel to the diameter of the particle. The structures tend to return to a regular lattice after a defect is introduced; that is, for example, they tend to self-repair disorder induced by particle polydispersity, contaminants, and flow instabilities. The stability of different lattices is analyzed numerically for particles with different polydispersity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.