Abstract

Coincidence detection in visual and auditory cortex may also be critical for feature analysis in somatosensory cortex. We examined its role in the rat posteromedial barrel subfield (PMBSF) using high-resolution arrays of epipial electrodes. Five vibrissae, forming an arc, row, or diagonal, were simultaneously or asynchronously stimulated to simulate contact with a straight edge of different angles at natural whisking velocities. Results indicated supralinear responses for both slow-wave and fast oscillations (FOs, about 350 Hz) at intervibrissa delays <2 ms. FO represented the earliest and most precisely tuned response to coincident vibrissa displacement. There was little difference in the spatiotemporal pattern of slow-wave or FO responses in the row, arc, or diagonal. This equivalence of function suggests that the PMBSF may be capable of working as a two-dimensional integrative array, processing spatial features based on coincidence detection despite the direction that the vibrissae pass across an object.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call