Abstract

Carbon coated titanium dioxide supported on two-dimensional titanium carbide (C@TiO2/Ti3C2) is synthesized by simple annealing under a flowing acetylene (C2H2) atmosphere, and applied to improve the hydriding/dehydriding behavior of sodium alanate (NaAlH4). The results indicate that as-prepared C@TiO2/Ti3C2 composite exhibits excellent catalytic activity. The initial temperature for hydrogen desorption is reduced by 70 °C compared with the pristine sample. About 4.0 wt% hydrogen is released in 13 min at 140 °C. The apparent activation energies (Ea) of 10 wt% C@TiO2/Ti3C2 catalyzing NaAlH4 for the first two-steps dehydrogenation are 72.41 and 64.27 kJ mol−1 respectively. The structural analyses reveal that C@TiO2/Ti3C2 interacts with NaAlH4 by using ball milling and decomposes to form Ti-species which works in combination with carbon to improve the dehydrogenation performance of NaAlH4. This result provides an important progress in the hydrogen storage of NaAlH4 catalyzed by MXene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.