Abstract

We analyze the physics of bright solitons in 2D dipolar Bose-Einstein condensates. These solitons, which are not possible in short-range interacting gases, constitute the first realistic proposal of fully mobile stable 2D solitons in ultracold gases. In particular, we discuss the necessary conditions for the existence of stable 2D bright solitary waves by means of a 3D analysis of the lowest-lying excitations. We show that the anisotropy of the dipolar potential is crucial, since sufficiently large dipolar interactions can destabilize the 2D soliton. Additionally, we study the scattering of solitary waves, which, contrary to the contact-interacting case, is inelastic and could lead to fusion of the waves. Finally, the experimental possibilities for observability are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.