Abstract

In non-conservative nonlinear systems, the basic physical mechanics of soliton generation is that the kinetic energy and nonlinear terms of the system, as well as the gain and dissipation terms reach a double dynamic balance. How to generate stable free high-dimensional solitons in such a system is currently a challenging topic in soliton theory. In this article, we propose a theoretical scheme for realizing two-dimensional free bright solitons in exciton-polariton Bose-Einstein condensates, which proposes a physical mechanism for generating stable two-dimensional free space bright solitons through time periodic modulation interactions and a dual balance between gain and dissipation. In this end, firstly, we obtain the dynamic equations of two-dimensional bright soliton parameters through the Lagrange variational method, and obtain its dynamically stable parameter space. Secondly, the evolution of the generalized dissipative Gross-Pitaveskii equation is numerically simulated to verify the stability of two-dimensional bright solitons. Finally, we add Gaussian noise to simulate a real experimental environment and find that two-dimensional bright solitons are also stable within the observable time range of the experiment. Our experimental scheme opens the door to the study of bright solitons in high-dimensional free space in non-conservative systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call