Abstract

A two-dimensional binary phase grating is proposed in this paper. Unlike a conventional transmission grating, in theory, the proposed phase grating can simultaneously eliminate the zero- and high-order diffraction along certain axes on the image plane, forming a pure sinusoidal transmission modulation that leaves only the first-order diffraction. The first-ever, to the best of our knowledge, theoretical model for achieving sinusoidal transmission modulation is suggested in this paper; then the theoretical calculation and experiment results are displayed to investigate the physical mechanism of the proposed grating. Moreover, the manipulation on the arrangement of grating design can disperse or concentrate the diffraction energy at a specific axis. Finally, almost first-order-only diffraction is achieved on a single axis by introducing random changes to certain geometrical parameters of the two-dimensional binary phase grating. Our work provides potential applications in optical science and engineering fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.