Abstract

The capacity of two-dimensional (2D) optical intensity channels in which transmit images are constrained to be binary-level has been considered. Examples of such links exist in holographic storage, page-oriented memories, optical interconnects, 2D barcodes as well as multiple-input/multiple-output wireless optical links. Data are transmitted by sending a series of time-varying binary-level optical intensity images from transmitter to receiver. Neither strict spatial alignment between transmitter and receiver nor independence among the spatial channels is required. The approach combines spatial discrete multitone modulation developed for spatially frequency selective channels with halftoning to produce a binary-level output image. Data are modulated in spatial frequency domain as dictated by a water pouring spectrum over the optical transfer function as well as channel and quantisation noise. A binary-level output image is produced by exploiting the excess spatial bandwidth available at the transmitter to shape quantisation noise out of band. A general mathematical framework has been presented, in which such systems can be analysed and designed. In a pixelated wireless optical channel application, halftoning achieves 99.8% of the capacity of an equivalent unconstrained continuous amplitude channel using 1megapixel arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call