Abstract

Electrical transport properties of random binary networks composed of high-Tc superconductor Bi2Sr2Ca2Cu3O10+x (Bi2223) microparticles and half-metal ferromagnet La2/3Sr1/3MnO3 (LSMO) nanoparticles have been investigated. The experimental current-voltage characteristics of bulk samples of nanocomposites with a volumetric content of 4:1 components are well described by the Berezinsky–Kosterlitz–Thouless (BKT) model for two-dimensional (2D) superconductors undergoing a superconducting transition. The observed 2D-like behavior of the three-dimensional transport properties of the nanocomposite is most likely associated with two different physical spatial scales involved in the formation of the properties of the nanocomposite: a significant difference between the geometric dimensions of the constituent components and the appearance of a triplet superconducting state induced by the proximity effect in semi-metallic manganite LSMO contacting Bi2223. Below the Bi2223 superconducting transition temperature, bulk resistive losses in the nanostructures are determined by the current flowing through ferromagnetic LSMO nanoparticles that cover Bi2223 microgranules. As temperature decreases, proximity-induced superconducting transition in the effectively 2D surface of LSMO nanoparticles covering Bi2223 microgranules reveals itself as the topological BKT-like superconducting transition in the bulk sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.