Abstract

A solar-thermal fluid-wall reactor consisting of three concentric vertical tubes is constructed to dissociate methane to hydrogen and carbon black using concentrated solar power. Several aspects of the design are modeled for scaling the system up: the heat transfer and its effect on the integrity of the materials, and the fluid flow of all gas streams within the reactor. It is determined that the inlet gas temperatures, mass flow rates, and permeability of the porous wall affect the gas flow profile through the porous tube wall. By increasing the inlet gas temperature and/or the tube permeability in the hot zone section of the reactor, a more uniform flow profile can be obtained along the length of the tube.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.