Abstract

Dirac point in two-dimensional (2D) materials has been a fascinating subject of research. Recently, it has been theoretically predicted that Dirac point may also be stabilized in 2D magnetic systems. However, it remains a challenge to identify concrete 2D materials which host such magnetic Dirac point. Here, based on first-principles calculations and theoretical analysis, we propose a stable 2D material, the monolayers TaCoTe$_2$, as an antiferromagnetic (AFM) 2D Dirac material. We show that it has an AFM ground state with an out-of-plane N\'{e}el vector. It hosts a pair of 2D AFM Dirac points on the Fermi level in the absence of spin-orbit coupling (SOC). When the SOC is considered, a small gap is opened at the original Dirac points. Meanwhile, another pair of Dirac points appear on the Brillouin zone boundary below the Fermi level, which are robust under SOC and have a type-II dispersion. Such a type-II AFM Dirac point has not been observed before. We further show that the location of this Dirac point as well as its dispersion type can be controlled by tuning the N\'{e}el vector orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.