Abstract

We address the dynamics of two-dimensional (2D) truncated Airy waves (TAWs) and three-component solitons in the system of two fundamental-frequency (FF) and second-harmonic (SH) fields, coupled by quadratic () terms. The system models second–harmonic-generating optical media and atomic-molecular mixtures in Bose–Einstein condensates. In addition to stable solitons, the system maintains truncated-Airy-waves states in either one of the FF components, represented by exact solutions, which are stable, unlike the Airy waves in the degenerate (two-component) system. It is also possible to imprint vorticity onto the 2D Airy modes. By means of systematic simulations, we examine interactions between TAWs originally carried by different FF components, which are bending in opposite directions, through the SH field. The interaction leads to fusion of the input into a pair of narrow solitons. This is opposed to what happens in the 1D system, where the interacting Aity waves split into a large number of solitons. The interaction of truncated Aity waves carrying identical imprinted vorticities creates an additional pair of solitons, while opposite vorticities create a set of small-amplitude ‘debris’ in the output. Slowly moving solitons colliding with a heavy TAW bounce back, faster ones are absorbed by it, and collisions are quasi-elastic for fast solitons. Soliton-soliton collisions lead to merger into a single mode, or elastic passage, for lower and higher velocities, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call