Abstract

Two-dimensional (2D) materials display a unique set of physical/chemical properties and are considered potential building blocks for the manufacturing of microstructured materials for a number of applications. Prominent applications range from advanced electronics to miniaturized electrochemical energy storage devices (EESDs). Herein, we present a comprehensive and critical review of the recent developments in design and microfabrication of 2D-driven microscale electrodes for three-dimensional (3D)-printed micro-supercapacitors and micro-batteries. Firstly, we systematically discuss the advantages and disadvantages associated with various microfabrication techniques such as stereolithography, fused deposition modeling, inkjet printing, and direct ink writing. Next, key parameters disclosing the relationship between the characteristics of 2D-based materials and extrusion-driven 3D printing process for the development of versatile and sustainable EESDs are highlighted. 2D materials utilized for the construction of microelectrodes for supercapacitors (e.g., electric double layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors) and batteries (e.g., Li-based systems and next-generation systems, e.g., sodium-ion batteries and zinc-ion batteries) along with their prominent electrochemical contributions in relation to obtained 3D-printed architectures are discussed in detail. To promote the development of 2D materials-driven high-performance microscale EESDs, the relevant challenges and future research opportunities are also addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call