Abstract
Mechanical properties in tissues are an important indicator because they are associated with disease states. One of the well-known excitation sources in optical coherence elastography (OCE) to determine mechanical properties is acoustic radiation force (ARF); however, a complicated focusing alignment cannot be avoided. Another excitation source is a piezoelectric (PZT) stack to obtain strain images via compression, which can affect the intrinsic mechanical properties of tissues in tissue engineering. In this study, we report a new technique called two-dimensional (2D) dynamic vibration OCE (DV-OCE) to evaluate 2D wave velocities without tedious focusing alignment procedures and is a non-contact method with respect to the samples. The three-dimensional (3D) Fourier transform was utilized to transfer the traveling waves (x, y, t) into 3D k-space (kx, ky, f). A spatial 2D wavenumber filter and multi-angle directional filter were employed to decompose the waves with omni-directional components into four individual traveling directions. The 2D local wave velocity algorithm was used to calculate a 2D wave velocity map. Six materials, two homogeneous phantoms with 10 mm thickness, two homogeneous phantoms with 2 mm thickness, one heterogeneous phantom with 2 mm diameter inclusion and an ex vivo porcine kidney, were examined in this study. In addition, the ARF-OCE was used to evaluate wave velocities for comparison. Numerical simulations were performed to validate the proposed 2D dynamic vibration OCE technique. We demonstrate that the experimental results were in a good agreement with the results from ARF-OCE (transient OCE) and numerical simulations. Our proposed 2D dynamic vibration OCE could potentially pave the way for mechanical evaluation in tissue engineering and for laboratory translation with easy-to-setup and contactless advantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.