Abstract

The binding of aromatic donor molecules to plant peroxidases has been investigated by examining the complex formed between horseradish peroxidase isoenzyme C and indole-3-propionic acid using two-dimensional 1H-NMR spectroscopy. Despite the relatively high molecular mass and paramagnetism of the protein, this technique can be successfully applied to provide new information on the structure of the complex. A number of relatively well-resolved resonances in certain regions of the one-dimensional spectrum are assigned to amino acid type on the basis of the two-dimensional experiments. Two phenylalanine side chains are found to interact at positions close to the haem group as shown by nuclear Overhauser effect spectroscopy (NOESY). Furthermore, the NOESY spectrum of the complex reveals distinct interactions between these phenylalanine residues and the indole ring of the donor molecule. The binding site is found to comprise of these phenylalanine side chains and also the methyl group of a leucine or valine residue. On the basis of the model structure of horseradish peroxidase isoenzyme C proposed by Welinder and Nørskov-Lauritsen and information from previous studies of the related turnip peroxidases, possible locations for this binding site are discussed. The NMR methods adopted here may be generally applicable to the study of peroxidase--aromatic-donor interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.