Abstract

Object detection plays a critical role for automatic video analysis in many vision applications. Background subtraction has been the mainstream in the field of moving objects detection. However, most of state‐of‐the‐art techniques of background subtraction operate on each pixel independently ignoring the global features of images. A motion detection method based on subspace update of background is proposed in this study. This method uses a subspace spanned by the principal components of background sequence to characterise the background and integrates the regional continuity of objects to segment the foreground. To deal with changes in the background geometry, a learning factor is introduced into the authors’ model to update the subspace timely. Additionally, to reduce computational complexity, they use two‐dimension principal component analysis (PCA) rather than traditional PCA to obtain the principal components of background. Experiments demonstrate that the update policy is effective and in most cases this proposed method can achieve better results than others compared in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.