Abstract
Transmission through the thalamus activates circuits involving the GABAergic neurons of the thalamic reticular nucleus (TRN). TRN cells receive excitatory inputs from thalamocortical and corticothalamic cells and send inhibitory projections to thalamocortical cells. The inhibitory output of TRN neurons largely depends on the level of excitatory drive to these cells but may also be partly under the control of mechanisms intrinsic to the TRN. We examined two such possible mechanisms, short-term plasticity at glutamatergic synapses in the TRN and intra-TRN inhibition. In rat brain slices, responses of TRN neurons to brief trains of stimuli applied to glutamatergic inputs were recorded in voltage- or current-clamp mode. In voltage clamp, TRN cells showed no change in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory postsynaptic current amplitudes to stimulation at non-gamma frequencies (< 30 Hz), simulating background activity, but exhibited short-term depression in these amplitudes to stimulation at gamma frequencies (> 30 Hz), simulating sensory transmission. In current clamp, TRN cells increased their spike outputs in burst and tonic firing modes to increasing stimulus-train frequencies. These increases in spike output were most likely due to temporal summation of excitatory postsynaptic potentials. However, the frequency-dependent increase in tonic firing was attenuated at gamma stimulus frequencies, indicating that the synaptic depression selectively observed in this frequency range acts to suppress TRN cell output. In contrast, intra-TRN inhibition reduced spike output selectively at non-gamma stimulus frequencies. Thus, our data indicate that two intrinsic mechanisms play a role in controlling the tonic spike output of TRN neurons and these mechanisms are differentially related to two physiologically meaningful stimulus frequency ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.