Abstract

This paper presents two differential systems, involving first and second order derivatives of problem functions, respectively, for solving equality-constrained optimization problems. Local minimizers to the optimization problems are proved to be asymptotically stable equilibrium points of the two differential systems. First, the Euler discrete schemes with constant stepsizes for the two differential systems are presented and their convergence theorems are demonstrated. Second, we construct algorithms in which directions are computed by these two systems and the stepsizes are generated by Armijo line search to solve the original equality-constrained optimization problem. The constructed algorithms and the Runge–Kutta method are employed to solve the Euler discrete schemes and the differential equation systems, respectively. We prove that the discrete scheme based on the differential equation system with the second order information has the locally quadratic convergence rate under the local Lipschitz condition. The numerical results given here show that Runge–Kutta method has better stability and higher precision and the numerical method based on the differential equation system with the second information is faster than the other one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.