Abstract

ABSTRACTA new series of conjugated polymers containing dibenzo[def, mno]chrysene units were successfully designed and synthesized to investigate their physical properties and device performances in field‐effect transistors and photovoltaic cells. Two polymers, namely poly(4,10‐bithiophene‐6,12‐bis(2‐decyltetradecyloxy)‐dibezo[def, mno]chrysene) (PTTC) and poly(2,2′‐thiophenevinylenthiophene‐4,10‐[6,12‐bis(2‐decyltetradecyloxy)‐dibenzo[def, mno]chrysene]) (PTVTC), exhibited similar light absorption, electrochemical characteristics, and theoretical electronic structures. However, they behaved very differently when used in thin‐film transistors and solar cells. The PTTC polymer with two thiophene groups had better charge transport behavior, whereas the PTVTC polymer with two thiophene units connected by a vinyl group exhibited higher efficiency in bulk heterojunction photovoltaic cells. These results were discussed in terms of their nanostructural bulk morphologies established from transmission electron microscopy and two‐dimensional grazing incidence wide angle X‐ray scattering analyses. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2559–2570

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.