Abstract

The crystal structures of two ammonium salts of 2-amino-4-nitro-benzoic acid are described, namely di-methyl-aza-nium 2-amino-4-nitro-benzoate, C2H8N+·C7H5N2O4-, (I), and di-butyl-aza-nium 2-amino-4-nitro-benzoate, C8H20N+·C7H5N2O4-, (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl-ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti-periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl-ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra-molecular chain by charge-assisted amine-N-H⋯O(carboxyl-ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N-O⋯π(arene) and methyl-C-H⋯O(nitro) inter-actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N-H⋯O(carboxyl-ate) hydrogen bonding. The formation of ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds, involving all ammonium-N-H and carboxyl-ate O atoms leads to a three-dimensional architecture; additional C-H⋯O(nitro) inter-actions contribute to the packing. The Hirshfeld surface analysis confirms the importance of the hydrogen bonding in both crystal structures. Indeed, O⋯H/H⋯O inter-actions contribute nearly 50% to the entire Hirshfeld surface in (I).

Highlights

  • The crystal structures of two ammonium salts of 2-amino-4-nitrobenzoic acid are described, namely dimethylazanium 2-amino-4-nitrobenzoate, C2H8N+ÁC7H5N2O4À, (I), and dibutylazanium 2-amino-4-nitrobenzoate, C8H20N+ÁC7H5N2O4À, (II)

  • Small twists are noted for the carboxylate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15), respectively; the dihedral angle between the substituents is 7.9 (2)

  • In the crystal of (I), anions are linked into a jagged supramolecular chain by charge-assisted amine-N—HÁ Á ÁO(carboxylate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—HÁ Á ÁO(carboxylate) hydrogen bonds

Read more

Summary

Chemical context

The simple carboxylic acid 2-amino-4-nitrobenzoic acid has been little studied from a crystallographic point of view: its molecular structure was only reported in 2011 (Wardell & Tiekink, 2011). As a continuation of our work in the area noted above (Wardell & Tiekink, 2011; Wardell & Wardell, 2016), we describe the crystal and molecular structures of two new anhydrous salts of 2-amino-4-nitrobenzoate, with the counter-cations [Me2NH2]+ (I) and [n-Bu2NH2]+ (II). Further insight into the self-assembly of the salts has been gained through a Hirshfeld surface analysis

Structural commentary
Supramolecular features
Hirshfeld surface analysis
Database survey
Synthesis and crystallization
Findings
Refinement
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call