Abstract
In this paper, we propose two new hybrid nonlinear conjugate gradient methods, which produce sufficient descent search direction at every iteration. This property depends neither on the line search used nor on the convexity of the objective function. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that both hybrid methods are efficient for the given test problems from the CUTE library.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.