Abstract

Robust control can maintain robust stability and robust performance for an inductive power transfer (IPT) system in a comparatively larger perturbation range of parameters. However, it ignores the transient performance requirements and influence of open-loop properties on a resulting controller. So a method of improving two-degree-of-freedom (2DOF) H $\infty$ robust control for the IPT system is proposed. Based on the generalized state-space averaged model, the distribution of poles and zeroes under mutual-inductance and load perturbations with a bounded range is investigated in detail. An expected closed-loop transfer function is added in a 2DOF control structure with a prefilter and feedback controller, to introduce the transient performance requirements. Then, a generalized plant including the model of the IPT system is defined and its state-space realization for standard robust control configuration is also derived. Finally, controllers with different performances are designed referring to the mutual-inductance and load features. Simulation and experiment results show that the 2DOF H $\infty$ robust controller designed with parameters that maximize the modulus value of a dominant pole can reach the prescribed performances for the IPT system, with settling time and overshoot of no more than 5 ms and 2% in startup and reference tracking processes, and restoring time of no more than 5 ms when parameter perturbation occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.