Abstract

In the past two decades, amyloids, typically associated with human diseases, have been described to play various functional roles in nearly all life forms. The structural and functional diversity of microbial 'functional amyloids' has dramatically increased in recent years, expanding the canonical definition of these assembled molecules. Here, we provide a broad review of the current understanding of microbial functional amyloids and their diverse roles, putting the spotlight on recent discoveries in the field. We discuss their functions as structural scaffolds, surface-tension modulators, adhesion molecules, cell-cycle and gametogenesis regulators, toxins, and mediators of host-pathogen interactions. We outline how noncanonical amyloid morphologies and sophisticated regulatory mechanisms underlie their functional diversity and emphasize their therapeutic and biotechnological implications and applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call