Abstract

Abstract. The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth – AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995–2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.

Highlights

  • An aerosol is a suspension of droplets and/or particles in a fluid (Seinfeld and Pandis, 1997)

  • Along-Track Scanning Radiometer (ATSR) aerosol optical depth (AOD) is overall lower than that from Moderate Resolution Imaging Spectroradiometer (MODIS), and the difference increases with increasing AOD

  • Satellite data have been used to provide a 3-D aerosol climatology over mainland comparison with lidar measurements in SACOL (China) for two decades (1995–2015), describing the spatial variation of the column-integrated extinction, or AOD, by combining Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) and MODIS/Terra Collection 6 (C6) merged DTDB AOD data

Read more

Summary

Introduction

An aerosol is a suspension of droplets and/or particles in a fluid (Seinfeld and Pandis, 1997). At very high RH, around 100 %, hygroscopic particles are activated to cloud condensation nuclei, grow into the cloud droplet size range and are no longer considered aerosol particles When they are transported into a lower RH environment, the water evaporates, but the remaining aerosol particle may have a different chemical composition than the original one. Aerosol particles are generated from their precursor gases by nucleation under the influence of UV radiation or catalysts (e.g., Kulmala and Kerminen, 2008) after which these very small particles, with a radius of a few nanometers, may grow by condensation and coagulation In this process, their chemical composition may change, and the atmospheric aerosol is a complex mixture of chemical components distributed over a wide range of sizes spanning 5–6 orders of magnitude from a few nanometers to tens of micrometers and a wide range of concentrations spanning about 10 orders of magnitude, depending on the particle size. Aerosol particles are important because of their effects on climate (e.g., Rosenfeld et al, 2008; Koren et al, 2014; Guo et al, 2016a), health (Pope et al, 2009; Anenberg et al, 2010), atmospheric chemistry, visibility (Sisler and Malm, 1994), cultural heritage, etc

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call