Abstract

A two-core photonic crystal fiber (TC-PCF) based highly-sensitive temperature sensor was proposed and demonstrated. By selectively infiltrating the central airhole with refractive index liquid (RIL), a three-parallel-waveguide structure was formed. A dual-component interference pattern, consisting of a large spectrum envelope and fine interference fringes, was observed in the transmission spectrum. The simulation results confirmed that the interference was arising from a few hybrid supermodes in the fiber coupler structure. They were in good agreement with the experimental observation on the discrete temperature windows with different temperature sensitivities due to couplings between different hybrid supermodes in respective temperature windows. By tracing the wavelength shifts of the large spectrum envelope, high sensitivities were achieved at 42.621 nm/°C in the temperature range from 54.2 °C to 55 °C and 32.159 nm/°C from 51.8 °C to 52.6 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.