Abstract

The paper presents solutions of two contact problems for the annular plate die on an elastic half-space under the action of axisymmetrically applied force and moment. Such problems usually arise in the calculation of rigid foundations with the sole of the annular shape in chimneys, cooling towers, water towers and other high-rise buildings on the wind load and the load from its own weight. Both problems are formulated in the form of triple integral equations, which are reduced to one integral equation by the method of substitution. In the case of the axisymmetric problem, the kernel of the integral equation depends on the product of three Bessel functions. Using the formula to represent two Bessel functions in the form of a double row on the works of hypergeometric functions Bessel function, the problem reduces to a functional equation that connects the movement of the stamp with the unknown coefficients of the distribution of contact stresses. The resulting functional equation is reduced to an infinite system of linear algebraic equations, which is solved by truncation. Under the action of a moment on the annular plate die, the distribution of contact stresses is searched as a series by the products of the Legendre attached functions with a weight corresponding to the features in the contact stresses at the die edges. Using the spectral G. Ya. Popov ratio for the ring plate, the problem is again reduced to an infinite system of linear algebraic equations, which is also solved by the truncation method. Two examples of calculations for an annular plate die on an elastic half-space on the action of axisymmetrically applied force and moment are given. A comparison of the results of calculations on the proposed approach with the results for the round stamp and for the annular stamp with the solutions of other authors is made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.