Abstract

ABSTRACTAs ohmic contacts decrease in size and approach nanoscale dimensions, accurate electrical characterization is essential, requiring the development of suitable test structures for this task. We present here a new test structure derived from the standard three-contact circular transmission line model (CTLM) [1], for determining the specific contact resistivity of ohmic contacts. This test structure minimizes sources of error which arise from the CTLM by – (i) reducing the number of contacts within one test pattern from three to two, (ii) ensuring the assumption of equipotential metal contacts used in modelling is more easily attained experimentally, and (iii) allowing the fabrication of reduced geometrical dimensions essential for determining low specific contact resistivity values. The analytical expressions are presented and experiment results are undertaken to demonstrate the accuracy of the technique. There are no error corrections required for determining contact parameters using the presented test structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.