Abstract

This chapter presents two toy models dealing with trade-off issues arising in complex systems research. After comparison of modeling in classical physics and complex systems theorizing these models are discussed in detail. The first examines the trade-off between stability and flexibility in an environment subject to random fluctuations. The second compares possible response strategies in cases of potential risk and reward. The first model illustrates the general complex systems concept of virtual stability, defined as a condition in which a system maintains itself in an unstable state between attracting response states in order to gain flexibility in the face of random environmental fluctuations. The second model considers the trade-off between quickness and accuracy in cases of bounded decision time and information. Both models relate to decision processes in complex adaptive systems and some of their implications in this regard are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call