Abstract
Since the beginning of the development of interior-point methods, there exists a puzzling gap between the results in theory and the observations in numerical experience, i.e., algorithms with good polynomial bounds are not computationally efficient and algorithms demonstrated efficiency in computation do not have a good or any polynomial bound. Todd raised a question in 2002: “Can we find a theoretically and practically efficient way to reoptimize?” This paper is an effort to close the gap. We propose two arc-search infeasible interior-point algorithms with infeasible central path neighborhood wider than all existing infeasible interior-point algorithms that are proved to be convergent. We show that the first algorithm is polynomial and its simplified version has a complexity bound equal to the best known complexity bound for all (feasible or infeasible) interior-point algorithms. We demonstrate the computational efficiency of the proposed algorithms by testing all Netlib linear programming problems in standard form and comparing the numerical results to those obtained by Mehrotra’s predictor-corrector algorithm and a recently developed more efficient arc-search algorithm (the convergence of these two algorithms is unknown). We conclude that the newly proposed algorithms are not only polynomial but also computationally competitive compared to both Mehrotra’s predictor-corrector algorithm and the efficient arc-search algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.