Abstract
Different generalized Douglas-Kroll transformed Hamiltonians (DKn, n=1, 2,...,5) proposed recently by Hess et al. are investigated with respect to their performance in calculations of the spin-orbit splittings. The results are compared with those obtained in the exact infinite-order two-component (IOTC) formalism which is fully equivalent to the four-component Dirac approach. This is a comprehensive investigation of the ability of approximate DKn methods to correctly predict the spin-orbit splittings. On comparing the DKn results with the IOTC (Dirac) data one finds that the calculated spin-orbit splittings are systematically improved with the increasing order of the DK approximation. However, even the highest-order approximate two-component DK5 scheme shows certain deficiencies with respect to the treatment of the spin-orbit coupling terms in very heavy systems. The meaning of the removal of the spin-dependent terms in the so-called spin-free (scalar) relativistic methods for many-electron systems is discussed and a computational investigation of the performance of the spin-free DKn and IOTC methods for many-electron Hamiltonians is carried out. It is argued that the spin-free IOTC rather than the Dirac-Coulomb results give the appropriate reference for other spin-free schemes which are based on approximate two-component Hamiltonians. This is illustrated by calculations of spin-free DKn and IOTC total energies, r(-1) expectation values, ionization potentials, and electron affinities of heavy atomic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.