Abstract

Mean-velocity and turbulence measurements obtained by two-component laser Doppler velocimetry are presented, together with numerical predictions, for the shock-related separation of a turbulent boundary layer at Mach 2.85. The basic geometry, a 30 deg half-angle flare mounted on a long cylinder, is made three-dimensional by tipping the flare at an angle of attack, alpha. The separation length and general upstream influence increase with alpha. A recirculating vortex in the separated zone becomes stronger as three-dimensionality increases. A large-scale unsteadiness of the separation shock wave and surrounding flowfields grows in amplitude with alpha, and appears to strongly influence the amplification of turbulence correlations ahead of detachment. Scaling of the streamwise coordinate by separation length causes two-dimensional and three-dimensional data profiles on the cylinder to collapse for most measured quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.