Abstract
This paper devotes to establish complex dual Brunn-Minkowski theory. At first, we introduce the concepts of complex radial combination and complex radial-Blaschke combination, and obtain the relations between those two combinations and dual mixed volumes. Then, we extend the properties of real intersection body to the complex case. Finally, we prove some complex geometric inequalities about complex intersection bodies and complex mixed intersection bodies, such as dual Brunn-Minkowski type, dual Aleksandrov-Fenchel type and dual Minkowski type inequality. Moreover, as applications, we get some corollaries including an isoperimetric type inequality and a uniqueness theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.