Abstract

High‐performance nonfullerene ternary organic solar cells (OSCs) with two polymer donors are less frequently reported because of the limited numbers of efficient polymer donors with good compatibility. Herein, a wide‐bandgap polymer P1 with a deep‐lying highest occupied molecular orbital (HOMO) level is incorporated as the third component into the benchmark PM6:Y6 binary system to fabricate ternary OSCs. The introduction of P1 not only leads to extended absorption coverage and forms a cascade‐like energy level alignment but also shows excellent compatibility with PM6, resulting in a favorable morphology in the ternary blend. More importantly, P1 possesses a deeper HOMO level (−5.6 eV) than most well‐known donor polymers, which enables resulting ternary OSCs with an improved open‐circuit voltage. As a result, the optimized ternary OSCs with 40 wt% P1 in donors achieve a power conversion efficiency (PCE) of 16.2% with a small nonradiative recombination loss of 0.23 eV, which is among the highest values of ternary OSCs based on two polymer donors. In addition, the ternary OSCs show a broad composition tolerance with a high PCE of over 14% throughout the whole blend ratios. These results provide an effective approach to fabricate efficient ternary OSCs by synergizing two wide‐bandgap polymer donors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.