Abstract

• Compartmental approach is used to model and simulate a top sprayed fluidized bed granulator. • The dynamic behavior is analysed by varying the process conditions and parameters. • Finite volume scheme is modified to solve the proposed mathematical model. • New analytical solutions are derived for the verification of model. • Constant volume Monte Carlo is developed for the proposed model and used for the validation. A top Spray Fluidized Bed Granulator (SFBG) is being modeled and analyzed with the help of population balance equation (PBE) and analytical as well as numerical results. The mathematical model for SFBG is derived using the concept of compartment modeling. The granulator is divided into two compartments, a wet compartment in which aggregation is the dominant process, and a dry compartment that is dominated by breakage. A new discretization is given to solve the model which is based on the idea of conserving the important properties of the system. The numerical results of the moments derived by the new discretization are validated against the developed exact results for different combinations of the aggregation and breakage kernels. The model is also tested for physical tractable kernel and the numerical results are authenticated with the results of constant volume Monte Carlo. The two-compartment model is shown to behave dynamically in a distinctly different manner to the simpler one-compartment model. The most critical parameter is the exchange flow between the compartments. When the characteristic time for this flow is low relative to the rates of aggregation and breakage, the effect of breakage is amplified disproportionally relative to breakage, and whereas the single-compartment granulator always reaches steady state between the rates of aggregation and breakage, the two-compartment model may, under some conditions, lead to continuously decreasing size under the dominance of breakage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.