Abstract

Two cold-induced chitinases were isolated and purified from the mesocarp cherimoyas (Annona cherimola Mill.) and they were characterised as acidic endochitinases with a Mr of 24.79 and 47.77kDa (AChi24 and AChi48, respectively), both family 19 glycosyl hydrolases. These purified chitinases differed significantly in their biochemical and biophysical properties. While both enzymes had similar optimal acidic pH values, AChi24 was enzymatically active and stable at alkaline pH values, as well as displaying an optimal temperature of 45°C and moderate thermostability. Kinetic studies revealed a great catalytic efficiency of AChi24 for oligomeric and polymeric substrates. Conversely, AChi48 hydrolysis showed positive co-operativity that was associated to a mixture of different functional oligomeric states through weak transient protein interactions. The rise in the AChi48 kcat at increasing enzyme concentrations provided evidence of its oligomerisation. AChi48 chitinase was active and stable in a broad acidic pH range, and while it was relatively labile as temperatures increased, with an optimal temperature of 35°C, it retained about 50% of its maximal activity from 5 to 50°C. Thermodynamic characterisation reflected the high kcat of AChi48 and the remarkably lower ΔH(‡), ΔS(‡) and ΔG(‡) values at 5°C compared to AChi24, indicating that the hydrolytic activity of AChi48 was less thermodependent. In vitro functional studies revealed that AChi24 had a strong antifungal defence potential against Botrytis cinerea, whereas they displayed no cryoprotective or antifreeze activity. Hence, based on biochemical, thermodynamic and functional data, this study demonstrates that two acidic endochitinases are induced at low temperatures in a subtropical fruit, and that one of them acts in an oligomeric cold-adapted manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call