Abstract
Polyunsaturated fatty acids (PUFAs) have important industrial, physiological, and nutritional properties. Plants use the sequential activities of FAD2 and FAD3 desaturases to convert 18:1Δ9 to the important PUFA 18:3Δ9,12,15, whereas the fungus Fusarium verticillioides 7600 uses the bifunctional desaturase Fm1 for both reactions. Here, we used a combination of sequence comparisons, structural modeling, and mutagenesis experiments to investigate Fm1's regioselectivity and identified two functionally relevant clusters of residues that contribute to Fm1 activity. We found that cluster I (Leu153, Phe157, and His194), located near the catalytic iron ions, predominantly affects activity, whereas cluster II (Tyr280, His284, and Leu287), located in a helix forming the entrance to the substrate-binding pocket, mainly specifies 15-desaturation. Individual or combined substitutions of cluster II residues substantially reduced 15-desaturation. The combination of F157W from cluster I with Y280L, H284V, and L287T from cluster II created an increased-activity variant that almost completely lost the ability to desaturate at C15 and acted almost exclusively as a 12-desaturase. No variants were identified in which 15-desaturation occurred in the absence of 12-desaturation. Fm1 displayed only traces of activity with C16 substrate, but several cluster I variants exhibited increased activity with both 18:1 and 16:1 substrates, converting 16:1Δ9 to 16:3Δ9,12,15, consistent with Fm1 performing sequential v + 3 desaturation reactions at C12 and then C15. We propose that cluster II residues interact with the substrate headgroup when the acyl chain contains both Δ9 and Δ12 double bonds, in which case C15 becomes positioned adjacent to the di-iron site enabling a second v + 3 desaturation.
Highlights
Polyunsaturated fatty acids (PUFAs) have important industrial, physiological, and nutritional properties
We found that cluster I (Leu153, Phe157, and His194), located near the catalytic iron ions, predominantly affects activity, whereas cluster II (Tyr280, His284, and Leu287), located in a helix forming the entrance to the substrate-binding pocket, mainly specifies 15-desaturation
Very long chain (VLC-) PUFAs are involved in the regulation of human brain development [1, 2] as well as other cellular functions such as biosynthesis of cellular membrane phospholipids [3], modulating cell signaling [4], and serving as signaling messengers [5]
Summary
The amino acid sequences for membrane-bound fatty acid desaturases and related enzymes share relatively low homology. This reflects their diversity with respect to selectivity toward headgroups, substrate chain lengths, regioselectivity, and functional outcome. The above analyses reveal 44 sites that potentially contribute to the desaturation specificity/activity of Fm1. H284N altered Fm1’s ratio of ALA/LA to 0.55, it resulted in an increase in overall activity by more than 30% These results show that these residues can influence both activity and specificity, and their separation by only four amino acids suggests that they are likely located within the same secondary structural element
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.