Abstract

We carried out a statistical study of 132 Dipolarization Fronts (DFs) events detected by the Magnetospheric Multiscale mission (MMS) during the full 2017 Earth’s magnetotail season. We found that two DF classes can be distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation whereas a new class II (25.6%), which includes the six DF discussed in S. Alqeeq et al. 2022, corresponds to a bump of the magnetic field associated with a minimum of the ion and electron pressures and a reversal of the energy conversion process. For both classes we found that ions are mostly decoupled from the magnetic field by the Hall fields. The electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call