Abstract
A [2]catenane, which incorporates hydroquinone (HQ) and a sterically bulky tetrathiafulvalene (TTF) into a bismacrocycle, has been designed to probe the alongside charge-transfer (CT) interactions taking place between a TTF unit and one of the bipyridinium moieties in the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+). A template-directed strategy employs the HQ unit as the primary template for formation of the tetracationic cyclophane CBPQT4+, affording the desired [2]catenane structure but as an uncharacteristic green solid. The X-ray crystal structure and detailed 13C NMR assignments have identified a stereoselective preference for catenation about the cis isomer. The 1H NMR spectroscopy, electrochemistry, and X-ray crystallography all confirm that the CBPQT4+ cyclophane encircles the HQ unit, thereby defining a structure which would normally determine a red color. The visible-NIR region of the absorption spectrum displays a band at approximately 740 nm that is unambiguously assigned to a TTF --> CBPQT4+ CT transition on the basis of resonance Raman spectroscopy using 785 nm excitation. The profile of the CT band changes depending on the ratio of the cis- to trans-TTF isomers in the [2]catenane for which the molar absorptivity of each isomer is estimated to be significantly different at epsilon max = 380 and 3690 M-1 cm-1, respectively. Molecular modeling studies confirmed that the observed difference in the absorption spectroscopic profile can be accounted for by both a better overlap of the HOMO(TTF) and LUMO+1(CBPQT4+) as well as a more stable face-to-face (pi...pi) conformation in the trans isomer compared to the edge-to-face cis isomer of the [2]catenane. The latter is arranged for pi-orbital overlap through the sulfur atoms of the TTF unit, thereby defining an [Spi...pi] interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.