Abstract

Plants are naturally resistant to most pathogens through a broad and durable defense response called nonhost disease resistance. Nonhost disease resistance is a complex process that includes preformed physical and chemical barriers and induced responses. In spite of its importance, many components of nonhost disease resistance remain to be identified and characterized. Using virus-induced gene silencing in Nicotiana benthamiana, we discovered a novel gene that we named NbNHR2 (N. benthamiana nonhost resistance 2). NbNHR2-silenced plants were susceptible to the nonadapted pathogen Pseudomonas syringae pv. tomato T1, which does not cause disease in wild-type or nonsilenced N. benthamiana plants. We found two orthologous genes in Arabidopsis thaliana: AtNHR2A and AtNHR2B. Similar to the results obtained in N. benthamiana, Atnhr2a and Atnhr2b mutants were susceptible to the nonadapted bacterial pathogen of A. thaliana, P. syringae pv. tabaci. We further found that these mutants were also defective in callose deposition. AtNHR2A and AtNHR2B fluorescent protein fusions transiently expressed in N. benthamiana localized predominantly to chloroplasts and a few unidentified dynamic puncta. RFP-AtNHR2A and AtNHR2B-GFP displayed overlapping signals in chloroplasts, indicating that the two proteins could interact, an idea supported by coimmunoprecipitation studies. We propose that AtNHR2A and AtNHR2B are new components of a chloroplast-signaling pathway that activates callose deposition to the cell wall in response to bacterial pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call