Abstract

The formulation and method of solution of the problem of time-optimal control of induction heating process of an unlimited plate with two control actions on the value of internal heat sources with technological constraint in relation to a one-dimensional model of the temperature field are proposed. The problem is solved under the conditions of a given accuracy of uniform approximation of the final temperature distribution over the thickness of the plate to the required. The method of finite integral transformations is used to search for the input-output characteristics of an object with distributed parameters with two control actions. The preliminary parameterization of control actions based on analytical optimality conditions in the form of the Pontryagin maximum principle is used. At the next stage reduction is performed to the problem of semi-infinite optimization, the solution of which is found using the alternance method. The alternance properties of the final resulting temperature state at the end of the optimal process lead to a basic system of relations, which, if there is additional information about the shape of the temperature distribution curve, is reduced to a system of equations that can be solved. An example of solving the problem of time-optimal control of temperature field of an unlimited plate with two offices is carried out in two stages. At first stage the case of induction heating without maximum temperature constraints is considered, at the second stage is carried out on the basis of the results of the first stage to obtain the solution subject to the limitation on the maximum temperature of the heated billet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.