Abstract

We investigate a novel two-channel grating encoder that can perform simultaneous measurements of six-degree-of-freedom (DOF) motions of two adjacent sub-components of synthetic-aperture optics such as pulse-compression gratings(PCGs) and telescope-primary mirrors. The grating encoder consists of a reading head and two separate gratings, which are attached to the back of the sub-components, respectively. The reading head is constructed such that there two identical optical probes can share the same optical components. The two probes are guided to hit each of the two gratings and can detect six-DOF motions simultaneously and independently. For each probe, the incident beam propagates through both a three-axes grating interferometry module and a three-axes diffraction integrated autocollimator-module, which detects translational and rotational movement, respectively. By combining the two modules it is possible to perform six-DOF measurement for a single point. The common-path configuration of the two probes enable identical responses to environmental variation, which ensures high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.