Abstract

We show that the temperature dependence of conductivity of high-mobility organic crystals pentacene and rubrene can be quantitatively described in the framework of the model where carriers are scattered by quenched local impurities and interact with phonons by Su-Schrieffer-Hegger (SSH) coupling. Within this model, we present approximation-free results for mobility and optical conductivity obtained by world line Monte Carlo, which we generalize to the case of coupling both to phonons and impurities. We find fingerprints of carrier dynamics in these compounds which differ from conventional metals and show that the dynamics of carriers can be described as a superposition of a Drude term representing diffusive mobile particles and a Lorentz term associated with dynamics of localized charges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.