Abstract

Herein, a novel dual-channel electrochemical immunosensor was fabricated via vertical growth of AuPt-decorated boron-doped graphene (AuPt-BG) nanosheets as a signal amplification platform to detect cancer antigen 153 (CA153). Highly open, porous AuPt-BG films were synthesized using one-step electron-assisted hot-filament chemical vapor deposition. The Au–Pt alloy nanoparticles were dispersed on BG nanosheets to improve their biocompatibility, and antibodies (Ab) were directly bonded to the AuPt-BG electrode. The architectures enlarged the loading of CA153Ab and efficiently catalyzed the Fe(CN)63–/4– reaction, ultimately amplifying the signals. This novel strategy allows the simultaneous detection of CA153 in the oxidation and reduction channels, improving the reliability of the detection results. The AuPt-BG-based immunosensor exhibited a lower detection limit (0.0012 mU mL−1, S/N = 3) and wider linear range (0.1–4 × 104 mU mL−1) along with improved reproducibility, selectivity, and stability for the assay of CA153. Owing to the high process controllability of AuPt-BG films, a large-area electrode for in-vitro analyses and a flexible microelectrode for in-vivo analyses were prepared, which confirmed that the AuPt-BG-based sensor is an ideal CA153 detection platform for clinical diagnosis and practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.